

twin tower desiccant compressed air dryers

flow capacity: 200 - 10000 scfm (340 -16990 Nm<sup>3</sup>/hr)

 $D^5$ 

# twin tower desiccant compressed air dryers

flow capacity: 200 - 10000 scfm (340 - 16990 Nm<sup>3</sup>/hr)



Leading edge technology and hundreds of years of **experience**...nano-purification solutions, your world-class manufacturer of state-of-the-art compressed air and gas solutions to industry.

Our commitment at nano is to work alongside our **customers** and provide unique solutions with the highest quality products to solve your specific challenges.

A wealth of experience and leading edge products are only part of the equation. nano recognize that world-class customer **service** is the most important component to any successful business.

Experience. Customer. Service... nano



### clean and dry

Clean and dry compressed air is essential in every efficient and profitable manufacturing and process operation worldwide. nano's vast experience includes food, beverage, chemical, laboratory, medical and natural gas applications.

nano understand your needs and has created the nano range of high-performance, energy-saving compressed air and gas purification products to provide clean and dry compressed air and gases at an affordable price with unrivaled reliability.



### design

Our experienced team of design engineers are world leading specialists in the design of new and unique industrial compressed air treatment products and compressed air dryers.



### research & development

A core element of our capabilities - founded on cumulative decades of practical engineering expertise - our R&D team is continually looking for improved performance and reliability.



### manufacture

Our twin tower desiccant air dryers are built here in North America at a state of the art manufacturing facility to the highest standards of quality which ensure equipment reliability and high levels of performance.



## nano D<sup>5</sup> twin tower air dryers

Ambient air contains high levels of moisture, dust, hydrocarbons and other contaminants. Under pressure these contaminants are concentrated to harmful proportions. When left untreated the results are corrosion, bacteria, mold growth and freezing within your compressed air lines. This contamination causes damage to downstream equipment, leading to increasing maintenance, downtime and product spoilage.

While compressed air filters will remove solid particulate, liquids and aerosols, they cannot remove the moisture that remains in the form of vapor. This vapor will continuously condense into liquid water throughout your compressed air system as the pressure and temperature of the compressed air changes.

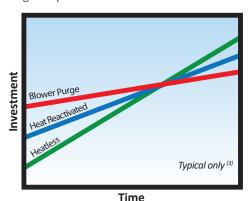
The nano D<sup>5</sup> twin tower desiccant air dryers are designed to remove water vapor, lowering the pressure dew point of your compressed air stream to -40°F or even -100°F. No liquid water or ice crystals will form even if the temperature of the compressed air falls to 40 degrees below zero!

Designed for the most demanding applications, the nano D<sup>5</sup> twin tower desiccant air dryers are your solution for continuous and uninterrupted clean dry air.

Reliability is built in... and backed by our 5 year warranty on inlet and purge exhaust valves and 3 year heater warranty (1)



# which dryer is right for you?


In a twin tower desiccant air dryer, one tower is on-line drying the compressed air while the other is off-line regenerating, which means it is eliminating the water vapor it has collected so it can be used to dry again. The two towers switch back and forth so one is always drying while the other is regenerating.

All nano D<sup>5</sup> twin tower desiccant dryers remove moisture from your compressed air in the same way and to the same exacting standards of performance and reliability. The difference is in how they regenerate and the amount of compressed air and/or power required to do so.

Which dryer to select for a given application is a function of several factors including: initial dryer investment, the cost of operating the dryer and air system capacity. Each of these needs to be considered to ensure the right dryer choice is made.

- **heatless** dryers use expanded dry "purge" air to regenerate the off-line bed. they require the lowest initial investment but require the most purge air (2)
- **externally heat reactivated** dryers use an electric heater to heat the dry purge air increasing the dryer's efficiency. they require a higher initial investment although use less purge air than heatless dryers (2)
- blower purge dryers use an electric heater and a blower to provide heated ambient air for regeneration. they require the highest initial investment although can use little to no purge air (2)

We take pride in our ability to provide you the most cost effective solution for your compressed air treatment needs. Contact support@n-psi.com for help choosing the best D<sup>5</sup> dryer for your application.



(1) when purchased with recommended pre-filtration

(2) heatless dryers require 15% purge. externally heat reactivated dryers require 8% purge. blower purge dryers require 2% purge (averaged over 4-hour cycle) for dry air cooling, however dry air cooling can be turned off allowing zero air loss operation. values are approximate and are a percentage of the maximum rated inlet flow (3) results will vary with operating conditions. contact support@n-psi.com to determine which dryer is the most cost effective option for your application

# D5 heatless desiccant air dryers

The advanced D<sup>5</sup> NHL heatless desiccant dryer combines reliable field proven components and a cost effective design with 21<sup>st</sup> century PLC controls and a digital user interface. For clean dry air, there is no better, more dependable, easier to use twin tower dryer available on the market today.

#### flexible & functional

- field adjustable cycle timing and purge control lets you maximize performance at any operating condition
- advanced PLC controls allow you to monitor the operation of the dryer through an easy to read digital display

### unique features

- the purge adjustment valve with visual setting indication allows precision adjustments to the purge flow
- a blend of up to three different desiccants are used in specialty applications to ensure consistent dew point performance

### high quality construction

- rugged field proven valves with stainless steel internals and Teflon<sup>®</sup> seats for long life and minimum maintenance
- primed and epoxy coated external surfaces for optimum corrosion protection

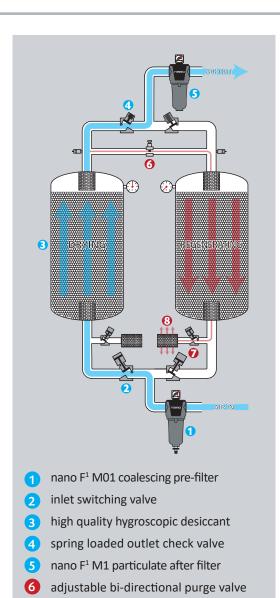
### cost effective design

 efficient nano pre and after filters combine with high quality desiccant for low pressure drop and consistent dew point performance

### customized to meet your needs

 at nano we understand that every customer and every application is different. That is why we provide a wide range of available options to customize your dryer to your specific needs

### advanced PLC controls


A powerful programmable logic controller monitors and controls each D<sup>5</sup> heatless desiccant air dryer. The system monitors multiple inputs, showing pertinent data on the digital display and controlling the fully automated drying and regeneration cycles.

**ES Energy Saving Option** - The optional "ES" dew point demand system uses a reliable precision hygrometer to continually monitor the outlet dew point and extend the cycle for maximum energy savings. Includes real time outlet dew point indication and high dew point alarm.





### standard features



angle body piston exhaust valve

low noise purge exhaust silencer

### angle body piston valves

- two-way direct acting piston valves with stainless steel internals and Teflon® seats ensure reliable field proven performance
- used for inlet valves on the NHL 200 to 600 and purge exhaust valves for all models



### high performance butterfly valves

- pneumatic actuators ensure precise proportional control and a bubble tight seal
- rugged stainless steel disk construction and Teflon® seats combined with a low pressure drop design
- used for inlet valves on the NHL 800 and larger



#### stainless steel check valves

- stainless steel spring return check valves provide worry-free operation and minimal maintenance
- lift style check valves used on the NHL 200 to 600 and wafer style check valves used on the NHL 800 and larger



### precision purge control valve

- purge flow is field adjustable with this precision valve with visual setting indication
- allows the operator to easily adjust the purge flow to match the operating conditions for optimal energy savings



### low noise exhaust mufflers

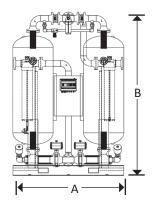
- these specially designed exhaust mufflers minimize the noise of depressurization and purge exhaust while also minimizing back pressure
- the high flow design reduces blockage extending service life

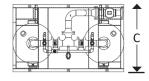


# options & upgrades

| option | description        | changes                    | from                     | to                            | benefit                                     |
|--------|--------------------|----------------------------|--------------------------|-------------------------------|---------------------------------------------|
| ES     | Energy Saving      | regeneration cycle         | timed operation          | dew point dependent operation | significant purge & energy savings          |
| 3V     | 3 Valve Bypass     | ability to bypass unit     | none                     | manual 3 valve block & bypass | maintenance without stopping air flow       |
| LDP    | Low Dew Point      | outlet pressure dew point  | -40°F (ISO 12500 Class 2 | 2)-100°F (ISO 12500 Class 1)  | improves downstream air quality             |
| N4     | NEMA 4             | electrical protection      | NEMA 12                  | NEMA 4                        | greater protection against contamination    |
| N4X    | NEMA 4X            | electrical protection      | NEMA 12                  | NEMA 4X                       | as above, plus greater corrosion resistance |
| N7     | NEMA 7             | electrical protection      | NEMA 12                  | NEMA 7                        | for explosion proof environments            |
| 50HZ   | 50Hz Power         | inlet power supply         | 120 VAC / 1 Ph / 60 Hz   | 220 VAC / 1 Ph / 50 Hz        | allows 50Hz power supply                    |
| PC     | Pneumatic Controls | inlet power supply         | 120 VAC / 1 Ph / 60 Hz   | fully pneumatic               | eliminates power supply                     |
| HP     | High Pressure      | allowable working pressure | 50 to 150 psig           | 50 to 250 psig                | allows higher inlet pressures               |
| LA     | Low Ambient        | allowable working temp     | 34 to 120°F              | -15°F to 120°F                | allows lower ambient temperatures           |

list is not all inclusive. contact support@n-psi.com for a complete list of available options


# NHL sizing & specifications


| dryer    | nodel          |      |       | dimensions<br>(inches) |     | approx.<br>weight | recommended<br>filtration <sup>(3)</sup> |              |              |
|----------|----------------|------|-------|------------------------|-----|-------------------|------------------------------------------|--------------|--------------|
| model    | NPT(F)/FLG (1) | scfm | Nm³/h | Α                      | В   | С                 | lbs                                      | pre filter   | after filter |
| NHL 200  | 1"             | 200  | 340   | 34                     | 85  | 24                | 650                                      | NF 0290 M01  | NF 0290 M1   |
| NHL 250  | 1 ½"           | 250  | 425   | 39                     | 86  | 24                | 810                                      | NF 0290 M01  | NF 0290 M1   |
| NHL 300  | 1 ½"           | 300  | 510   | 39                     | 86  | 24                | 830                                      | NF 0325 M01  | NF 0325 M1   |
| NHL 400  | 2"             | 400  | 680   | 44                     | 87  | 26                | 1020                                     | NF 0450 M01  | NF 0450 M1   |
| NHL 500  | 2"             | 500  | 850   | 47                     | 88  | 26                | 1210                                     | NF 0700 M01  | NF 0700 M1   |
| NHL 600  | 2"             | 600  | 1020  | 47                     | 88  | 26                | 1230                                     | NF 0700 M01  | NF 0700 M1   |
| NHL 800  | 3"             | 800  | 1360  | 66                     | 97  | 40                | 2400                                     | NF 1000 M01  | NF 1000 M1   |
| NHL 1000 | 3"             | 1000 | 1700  | 66                     | 97  | 40                | 2350                                     | NF 1000 M01  | NF 1000 M1   |
| NHL 1250 | 3"             | 1250 | 2125  | 66                     | 97  | 40                | 2560                                     | NF 1250 M01  | NF 1250 M1   |
| NHL 1500 | 3"             | 1500 | 2550  | 66                     | 97  | 40                | 3250                                     | NF 1500 M01  | NF 1500 M1   |
| NHL 2000 | 4"             | 2000 | 3400  | 84                     | 115 | 59                | 3600                                     | NFZ 2500 M01 | NFZ 2500 M1  |
| NHL 2500 | 4"             | 2500 | 4250  | 84                     | 115 | 60                | 4100                                     | NFZ 2500 M01 | NFZ 2500 M1  |
| NHL 3000 | 6"             | 3000 | 5100  | 103                    | 137 | 70                | 6000                                     | NFZ 3500 M01 | NFZ 3500 M1  |
| NHL 3500 | 6"             | 3500 | 5945  | 103                    | 137 | 70                | 6800                                     | NFZ 3500 M01 | NFZ 3500 M1  |
| NHL 4000 | 6"             | 4000 | 6795  | 103                    | 137 | 70                | 7300                                     | NFZ 4000 M01 | NFZ 4000 M1  |
| NHL 4500 | 6"             | 4500 | 7645  | 120                    | 130 | 70                | 7500                                     | NFZ 5000 M01 | NFZ 5000 M1  |
| NHL 5000 | 6"             | 5000 | 8495  | 120                    | 130 | 70                | 8200                                     | NFZ 5000 M01 | NFZ 5000 M1  |

| specifications             |              |               | sta                | ndard                   |     | optional                      |                       |          |     |  |  |
|----------------------------|--------------|---------------|--------------------|-------------------------|-----|-------------------------------|-----------------------|----------|-----|--|--|
| maximum particle size (ISC | class) (6)   |               | class 2 (1 micron) |                         |     |                               | class 1 (0.01 micron) |          |     |  |  |
| maximum water content (I   | SO class) (6 | )             | class 2            | (-40°F pdp              | o)  |                               | class 1 (-            | 94°F pdp | )   |  |  |
| design operating pressure  | range        |               | 80 to              | 150 psig <sup>(8)</sup> |     |                               | 50 to 2               | 250 psig |     |  |  |
| recommended operating t    |              | 38            | to 120°F           |                         |     |                               | -                     |          |     |  |  |
| design operating temperat  |              | 35 to 120°F   |                    |                         |     | -                             |                       |          |     |  |  |
| power supply requirement   |              | 115V/1Ph/60Hz |                    |                         |     | 220V/1Ph/50Hz & 230V/1Ph/60Hz |                       |          |     |  |  |
| pressure correction f      | actors (7)   |               |                    |                         |     |                               |                       |          |     |  |  |
|                            | 60           | 70            | 80                 | 90                      | 100 | 110                           | 130                   | 140      | 150 |  |  |
| inlet air pressure (psig)  | 60           | 70            | 80                 | 50                      |     |                               |                       |          |     |  |  |

| temperature correction factors (7) |      |      |      |     |      |      |      |      |  |  |  |
|------------------------------------|------|------|------|-----|------|------|------|------|--|--|--|
| inlet air temperature (°F)         | 70   | 80   | 90   | 100 | 105  | 110  | 115  | 120  |  |  |  |
| correction factor                  | 1.12 | 1.10 | 1.06 | 1   | 0.93 | 0.86 | 0.80 | 0.75 |  |  |  |

- 2" and below are NPT(F) threaded. 3" and above are flanged. All units with 3" piping will be ANSI welded pipe and the filter connections will be flanged
   at an inlet conditions of 100 psig and 100°F. For all other inlet conditions refer to the correction factors above recommended for all applications
   includes pre and after filters mounted on the dryer
   approximate weight for models NHL 2000 to 5000 does not include desiccant installed
   per ISO 8573.1:2010
   to be used as a rough guide only. All applications should be confirmed by nano. Contact support@n-psi.com
   NHL 2000 and up maximum working pressure is 125 psig
   units are certified UL/CuL
   NHL 200 NHL 2500 have ASME & CRN coded pressure vessels; NHL 3000 and up have ASME coded pressure vessels
- (11) specifications subject to change without notice





# D5 externally heated

The D<sup>5</sup> NEX externally heat reactivated dryers use heat to reduce the use of costly purge air. For consistent performance and cost effective operation these dryers are your optimum choice.

#### flexible & functional

- advanced PLC controls allow you to monitor the operation of the dryer through an easy to use digital display
- multiple thermocouples control regeneration and provide constant temperature

### unique features

- secondary heater contactor provides protection against overheating in the event of a primary contactor failure
- visual alarm lights and step by step diagnostics simplify troubleshooting



### high quality construction

- rugged field proven digitally controlled dual acting high performance butterfly valves and stainless steel spring return wafer check valves ensure long operating life and minimum maintenance
- insulated external electric heaters for efficient regeneration in all operating conditions

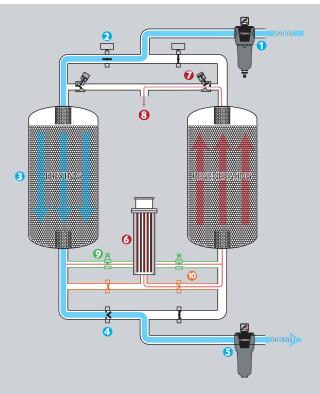
### cost effective design

• nano M01 coalescing pre filters and NHT M1 high temperature after filters with high quality hygroscopic desiccant ensure low pressure drop and consistent dew point performance

#### customized to meet your needs

• at nano we understand that every customer and every application is different. That is why we provide a wide range of available options to customize your dryer to your specific needs

### advanced PLC controls


The new Siemens S7-1200 PLC dryer controller with color touch screen display (HMI) provides the flexibility and power to control the heated type dryers and in support of your automation needs. The compact design, flexible configuration, and powerful instruction set combine to make the S7-1200 a perfect solution for controlling dryers.

The CPU combines a microprocessor, an integrated power supply, input and output circuits,built-in PROFINET, high-speed motion control I/O, and on-board analog inputs. The CPU contains the logic required to monitor and control the dryers function. The CPU provides a PROFINET port for communication over a PROFINET network. Additional modules are available for communicating over PROFIBUS, GPRS, RS485 or RS232 networks.

**ES Energy Saving Option** - The optional "ES" dew point demand system uses a reliable precision hygrometer to continually monitor the outlet dew point and adjust the cycle for maximum energy savings. Includes real time outlet dew point indication and an adjustable high dew point alarm.



### standard features



- nano F¹ M01 coalescing pre filter
- pneumatically actuated butterfly inlet valve
- 3 high quality hygroscopic desiccant
- 4 spring loaded outlet check valve
- 5 nano F<sup>3</sup> NHT M1 high temp particulate after filter
- 6 low watt density electric heater
- angle body two-way piston exhaust valve
- 8 purge exhaust port
- 9 bi-directional purge adjustment valve
- 10 purge check valve

### low watt density heater

- regeneration circuit is fully insulated for maximum efficiency
- specifically designed for a long and dependable operating life in harsh industrial environments



#### stainless steel check valves

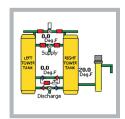
- metal on metal seats for reliable high temperature operation
- dependable stainless steel spring return check valves provide worry-free operation and minimal maintenance



### high performance butterfly valves

- pneumatic actuators ensure precise proportional control and a bubble tight seal
- stainless steel and Teflon® seats in a reliable and low pressure drop design




### precision purge control valve

- purge flow is field adjustable with this precision valve with visual setting indication
- easily adjust the purge flow to match the operating conditions



### **HMI** interface

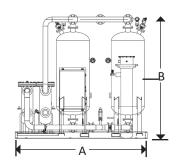
- synoptic display with visual dryer operation
- alarm indication and description

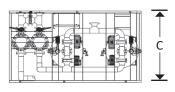


# options & upgrades

| option | description      | changes                    | from                       | to                             | benefit                                     |
|--------|------------------|----------------------------|----------------------------|--------------------------------|---------------------------------------------|
| ES     | Energy Saving    | regeneration cycle         | timed operation            | dew point dependent operation  | significant purge & energy savings          |
| 3V     | 3 Valve Bypass   | ability to bypass unit     | none                       | manual 3 valve block & bypass  | maintenance without stopping air flow       |
| TI     | Tower Insulation | thermal insulation         | heater & regen piping only | heater, towers & heated piping | reduces ambient heat loss                   |
| N4     | NEMA 4           | electrical protection      | NEMA 12                    | NEMA 4                         | greater protection against contamination    |
| N4X    | NEMA 4X          | electrical protection      | NEMA 12                    | NEMA 4X                        | as above, plus greater corrosion resistance |
| N7     | NEMA 7           | electrical protection      | NEMA 12                    | NEMA 7                         | for explosion proof environments            |
| 575V   | 575 Volt Power   | inlet power supply         | 460 VAC / 3 Ph / 60 Hz     | 575 VAC / 3 Ph / 60 Hz         | allows 575V power supply                    |
| 50HZ   | 50Hz Power       | inlet power supply         | 460 VAC / 3 Ph / 60 Hz     | 380 VAC / 3 Ph / 50 Hz         | allows 50Hz power supply                    |
| HP     | High Pressure    | allowable working pressure | 50 to 150 psig             | 50 to 250 psig                 | allows higher inlet pressures               |
| LA     | Low Ambient      | allowable working temp     | 34 to 120°F                | -15°F to 120°F                 | allows lower ambient temperatures           |

list is not all inclusive. contact support@n-psi.com for a complete list of available options


# **NEX** sizing & specifications


| dryer<br>model | inlet & outlet | rated<br>flow <sup>(2)</sup> |       |     | dimensions<br>(inches) |    |       | recommended<br>filtration <sup>(3)</sup> |               |
|----------------|----------------|------------------------------|-------|-----|------------------------|----|-------|------------------------------------------|---------------|
| illouei        | NPT(F)/FLG (1) | scfm                         | Nm³/h | Α   | В                      | С  | lbs   | pre filter                               | after filter  |
| NEX 200        | 1"             | 200                          | 340   | 34  | 92                     | 35 | 650   | NF 0290 M01                              | NHT 0300 M1   |
| NEX 250        | 1 ½"           | 250                          | 425   | 36  | 92                     | 34 | 850   | NF 0290 M01                              | NHT 0300 M1   |
| NEX 300        | 1 ½"           | 300                          | 510   | 36  | 92                     | 34 | 1140  | NF 0325 M01                              | NHT 0300 M1   |
| NEX 400        | 2"             | 400                          | 680   | 47  | 92                     | 45 | 1300  | NF 0450 M01                              | NHT 0450 M1   |
| NEX 500        | 2"             | 500                          | 850   | 47  | 92                     | 45 | 1400  | NF 0700 M01                              | NHT 0650 M1   |
| NEX 600        | 2"             | 600                          | 1020  | 47  | 92                     | 45 | 1500  | NF 0700 M01                              | NHT 0650 M1   |
| NEX 800        | 3"             | 800                          | 1360  | 70  | 96                     | 50 | 3450  | NF 0850 M01                              | NHT 1000 M1   |
| NEX 900        | 3"             | 900                          | 1530  | 70  | 96                     | 50 | 4050  | NF 1000 M01                              | NHT 1000 M1   |
| NEX 1000       | 3"             | 1000                         | 1700  | 70  | 96                     | 50 | 4250  | NF 1000 M01                              | NHT 1000 M1   |
| NEX 1250       | 3"             | 1250                         | 2125  | 69  | 97                     | 60 | 4550  | NF 1250 M01                              | NHT 1250 M1   |
| NEX 1500       | 3"             | 1500                         | 2550  | 69  | 97                     | 60 | 5150  | NF 1500 M01                              | NHT 1600 M1   |
| NEX 2000       | 4"             | 2000                         | 3400  | 85  | 113                    | 68 | 8900  | NFZ 2500 M01                             | NFZ 2500 M1HT |
| NEX 2500       | 4"             | 2500                         | 4250  | 85  | 113                    | 68 | 9150  | NFZ 2500 M01                             | NFZ 2500 M1HT |
| NEX 3000       | 6"             | 3000                         | 5100  | 125 | 133                    | 82 | 11050 | NFZ 3500 M01                             | NFZ 3500 M1HT |
| NEX 3500       | 6"             | 3500                         | 5950  | 125 | 133                    | 82 | 11550 | NFZ 3500 M01                             | NFZ 3500 M1HT |

| specifications                        | standard            | optional                         |
|---------------------------------------|---------------------|----------------------------------|
| maximum particle size (ISO class) (6) | class 2 (1 micron)  | class 1 (0.01 micron)            |
| maximum water content (ISO class) (6) | class 2 (-40°F pdp) | -                                |
| design operating pressure range       | 80 to 150 psig      | 58 to 250 psig                   |
| recommended operating temp range      | 40 to 100°F         | -                                |
| design operating temperature range    | 35 to 120°F         | -                                |
| power supply requirements             | 460 VAC / 60 Hz     | 575 V / 60 Hz or 380 VAC / 50 Hz |

| pressure correction factor | 'S <sup>(7)</sup> |      |      |      |      |      |      |      |      |
|----------------------------|-------------------|------|------|------|------|------|------|------|------|
| inlet air pressure (psig)  | 60                | 70   | 80   | 90   | 100  | 110  | 130  | 140  | 150  |
| correction factor          | 0.65              | 0.74 | 0.83 | 0.91 | 1    | 1.04 | 1.12 | 1.16 | 1.20 |
| temperature correction fa  | ctors (7)         |      |      |      |      |      |      |      |      |
| inlet air temperature (°F) | 70                | 80   | 90   | 10   | 00 1 | .05  | 110  | 115  | 120  |
| correction factor          | 1.12              | 1.10 | 1.06 | 5 1  | L 0  | .93  | 0.86 | 0.80 | 0.75 |

- (1) 2" and below are NPT(F) threaded. 3" and above are flanged. All units with 3" piping will be ANSI welded pipe and the filter connections will be flanged
- (2) at an inlet conditions of 100 psig and 100°F. For all other inlet conditions refer to the correction factors above
- (3) recommended for all applications
- (4) includes pre and after filters mounted on the dryer
- (5) approximate weight for models NEX 2000 to 3500 does not include desiccant installed
- (6) per ISO 8573.1:2010
- (7) to be used as a rough guide only. All applications should be confirmed by nano. Contact support@n-psi.com
- (8) units are UL/CuL certified
- (9) units have ASME & CRN coded pressure vessels
- (10) specifications subject to change without notice





# D<sup>5</sup> blower purge

The D<sup>5</sup> NEX externally heat reactivated dryers use heat to reduce the use of costly purge air. The NBP blower purge dryers take it a step further using a combination of heat and ambient air to further reduce (or even eliminate) purge air usage. For consistent performance and cost effective operation these dryers are your optimum choice.

### flexible & functional

- advanced PLC controls allow you to monitor the operation of the dryer through an easy to use digital display
- multiple thermocouples control regeneration and provide constant temperature display

### unique features

- secondary heater contactor provides protection against overheating in the event of a primary contactor failure
- visual alarm lights and step by step diagnostics simplify troubleshooting
- selectable "Dry Air Cooling" mode lets you choose between maximum performance and maximum energy savings depending on the needs of your application

### high quality construction

- rugged field proven digitally controlled dual acting high performance butterfly valves and stainless steel spring return wafer check valves ensure long operating life and minimum maintenance
- · insulated external electric heaters and high efficiency regenerative blowers for efficient regeneration in all operating conditions

#### cost effective design

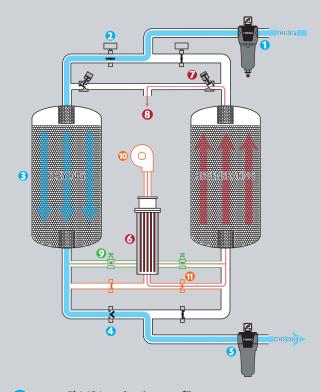
nano M01 coalescing pre filters and NHT M1 high temperature after filters with high quality hygroscopic desiccant ensure low
pressure drop and consistent dew point performance

### customized to meet your needs

at nano we understand that every customer and every application is different. that is why we provide a wide range of available
options to customize your dryer to your specific needs

### advanced PLC controls

The new Siemens S7-1200 PLC dryer controller with color touch screen display (HMI) provides the flexibility and power to control the heated type dryers and in support of your automation needs. The compact design, flexible configuration, and powerful instruction set combine to make the S7-1200 a perfect solution for controlling dryers.


The CPU combines a microprocessor, an integrated power supply, input and output circuits,built-in PROFINET, high-speed motion control I/O, and on-board analog inputs. The CPU contains the logic required to monitor and control the dryers function. The CPU provides a PROFINET port for communication over a PROFINET network. Additional modules are available for communicating over PROFIBUS, GPRS, RS485 or RS232 networks.

**ES Energy Saving Option** - The optional "ES" dew point demand system uses a reliable precision hygrometer to continually monitor the outlet dew point and adjust the cycle for maximum energy savings. Includes real time outlet dew point indication and an adjustable high dew point alarm.





### standard features



- nano F¹ M01 coalescing pre-filter
- pneumatically actuated butterfly inlet valve
- 3 high quality hygroscopic desiccant
- 4) spring loaded outlet check valve
- 5 nano F<sup>3</sup> NHT M1 high temp particulate after filter
- 6 low watt density electric heater
- angle body two-way piston exhaust valve
- 8 purge exhaust port
- 9 bi-directional purge adjustment valve high efficiency
- negenerative blower
- purge check valve

### efficient regenerative blower

- field proven high efficiency blower combines reliable performance and a long operating life
- regenerative design for lower noise levels than typical blowers



### low watt density heater

- regeneration circuit is fully insulated for maximum efficiency
- specifically designed for a long and dependable operating life in harsh industrial environments



#### stainless steel check valves

- metal on metal seats for reliable high temperature operation
- dependable stainless steel spring return check valves provide worry-free operation and minimal maintenance



### high performance butterfly valves

- pneumatic actuators ensure precise proportional control and a bubble tight seal
- stainless steel and Teflon® seats in a reliable and low pressure drop design



### precision purge control valve

- purge flow is field adjustable with this precision valve with visual setting indication
- easily adjust the purge flow to match the operating conditions

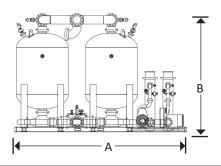


# options & upgrades

| option | description      | changes                    | from                       | to                             | benefit                                     |
|--------|------------------|----------------------------|----------------------------|--------------------------------|---------------------------------------------|
| ES     | Energy Saving    | regeneration cycle         | timed operation            | dew point dependent operation  | significant purge & energy savings          |
| 3V     | 3 Valve Bypass   | ability to bypass unit     | none                       | manual 3 valve block & bypass  | maintenance without stopping air flow       |
| LDP    | Low Dew Point    | outlet pressure dew point  | -40°F (ISO 12500 Class 2)  | -65°F (ISO 12500 Class 2)      | improves downstream air quality             |
| TI     | Tower Insulation | thermal insulation         | heater & regen piping only | heater, towers & heated piping | reduces ambient heat loss                   |
| N4     | NEMA 4           | electrical protection      | NEMA 12                    | NEMA 4                         | greater protection against contamination    |
| N4X    | NEMA 4X          | electrical protection      | NEMA 12                    | NEMA 4X                        | as above, plus greater corrosion resistance |
| N7     | NEMA 7           | electrical protection      | NEMA 12                    | NEMA 7                         | for explosion proof environments            |
| 575V   | 575 Volt Power   | inlet power supply         | 460 VAC / 3 Ph / 60 Hz     | 575 VAC / 3 Ph / 60 Hz         | allows 575V power supply                    |
| 50HZ   | 50Hz Power       | inlet power supply         | 460 VAC / 3 Ph / 60 Hz     | 380 VAC / 3 Ph / 50 Hz         | allows 50Hz power supply                    |
| HP     | High Pressure    | allowable working pressure | 50 to 150 psig             | 50 to 250 psig                 | allows higher inlet pressures               |
| LA     | Low Ambient      | allowable working temp     | 34 to 120°F                | -15°F to 120°F                 | allows lower ambient temperatures           |

list is not all inclusive. contact support@n-psi.com for a complete list of available options

# NBP sizing & specifications


| dryer     | model ————     |       | rated<br>flow <sup>(2)</sup> |     | dimensions<br>(inches) |    | approx.<br>weight | recommended<br>filtration <sup>(3)</sup> |                |  |
|-----------|----------------|-------|------------------------------|-----|------------------------|----|-------------------|------------------------------------------|----------------|--|
| illouei   | NPT(F)/FLG (1) | scfm  | Nm³/h                        | Α   | В                      | С  | lbs               | pre filter                               | after filter   |  |
| NBP 500   | 2"             | 500   | 850                          | 71  | 94                     | 44 | 1800              | NF 0700 M01                              | NHT 0650 M1    |  |
| NBP 650   | 2"             | 650   | 1105                         | 71  | 94                     | 44 | 1900              | NF 0700 M01                              | NHT 0650 M1    |  |
| NBP 800   | 3"             | 800   | 1360                         | 93  | 95                     | 60 | 5100              | NF 1000 M01                              | NHT 1000 M1    |  |
| NBP 1000  | 3"             | 1000  | 1700                         | 93  | 95                     | 60 | 5500              | NF 1000 M01                              | NHT 1000 M1    |  |
| NBP 1250  | 3"             | 1250  | 2125                         | 93  | 95                     | 60 | 6000              | NF 1250 M01                              | NHT 1250 M1    |  |
| NBP 1500  | 3"             | 1500  | 2550                         | 93  | 95                     | 60 | 6400              | NF 1500 M01                              | NHT 1600 M1    |  |
| NBP 2000  | 3"             | 2000  | 3400                         | 140 | 113                    | 65 | 7700              | NFZ 2500 M01                             | NFZ 2500 M1HT  |  |
| NBP 2500  | 4"             | 2500  | 4250                         | 140 | 113                    | 65 | 8300              | NFZ 2500 M01                             | NFZ 2500 M1HT  |  |
| NBP 3000  | 6"             | 3000  | 5100                         | 156 | 115                    | 71 | 10700             | NFZ 3500 M01                             | NFZ 3500 M1HT  |  |
| NBP 3500  | 6"             | 3500  | 5950                         | 156 | 134                    | 71 | 11500             | NFZ 3500 M01                             | NFZ 3500 M1HT  |  |
| NBP 4000  | 6"             | 4000  | 6800                         | 156 | 134                    | 71 | 12600             | NFZ 4000 M01                             | NFZ 4000 M1HT  |  |
| NBP 5000  | 6"             | 5000  | 8500                         | 167 | 134                    | 87 | 13600             | NFZ 5000 M01                             | NFZ 5000 M1HT  |  |
| NBP 6000  | 6"             | 6000  | 10200                        | 167 | 134                    | 87 | 15000             | NFZ 6000 M01                             | NFZ 6000 M1HT  |  |
| NBP 7000  | 8"             | 7000  | 11890                        | 175 | 134                    | 87 | 16000             | NFZ 7500 M01                             | NFZ 7500 M1HT  |  |
| NBP 8000  | 8"             | 8000  | 13590                        | 200 | 144                    | 88 | 17000             | NFZ 8500 M01                             | NFZ 8500 M1HT  |  |
| NBP 9000  | 10"            | 9000  | 15290                        | 218 | 152                    | 88 | 18000             | NFZ 10000 M01                            | NFZ10000 M1HT  |  |
| NBP 10000 | 10"            | 10000 | 16990                        | 218 | 152                    | 88 | 19000             | NFZ 10000 M01                            | NFZ 10000 M1HT |  |

| specifications                        | standard            | optional                        |
|---------------------------------------|---------------------|---------------------------------|
| maximum particle size (ISO class) (6) | class 2 (1 micron)  | class 1 (0.01 micron)           |
| maximum water content (ISO class) (6) | class 2 (-40°F pdp) | -                               |
| design operating pressure range       | 80 to 150 psig      | 58 to 250 psig                  |
| recommended operating temp range      | 40 to 100°F         | -                               |
| design operating temperature range    | 35 to 120°F         | -                               |
| power supply requirements             | 460 VAC / 60 Hz     | 575V / 60 Hz or 380 VAC / 50 Hz |

| pressure correction f     | pressure correction factors (7) |      |      |      |     |      |      |      |      |  |  |  |  |  |
|---------------------------|---------------------------------|------|------|------|-----|------|------|------|------|--|--|--|--|--|
| inlet air pressure (psig) | 60                              | 70   | 80   | 90   | 100 | 110  | 130  | 140  | 150  |  |  |  |  |  |
| correction factor         | 0.65                            | 0.74 | 0.83 | 0.91 | 1   | 1.04 | 1.12 | 1.16 | 1.20 |  |  |  |  |  |

| temperature correction factors (7) |      |      |      |     |      |      |      |      |
|------------------------------------|------|------|------|-----|------|------|------|------|
| inlet air temperature (°F)         | 70   | 80   | 90   | 100 | 105  | 110  | 115  | 120  |
| correction factor                  | 1.12 | 1.10 | 1.06 | 1   | 0.93 | 0.86 | 0.80 | 0.75 |

- (1) 2" and below are NPT(F) threaded. 3" and above are flanged. All units with 3" piping will be ANSI welded pipe and the filter connections will be flanged
- (2) at an inlet of 100 psig and 100°F. For all other inlet conditions refer to the correction factors above
- (3) recommended for all applications
- (4) includes pre and after filters mounted on the dryer through Model NBP 5000. Skid mounted pre and after filters for Models NBP 6000 to NBP 10000
- (5) approximate weight for models NBP 2000 to 10000 does not include desiccant installed
- (6) per ISO 8573.1:2010
- (7) to be used as a rough guide only. Confirm sizing with nano. Contact support@n-psi.com
- (8) units are UL/CuL certified
- (9) units have ASME & CRN coded pressure vessels
- (10) specifications subject to change without notice



